कोचिंग के सभी विद्यार्थियों को सूचित किया जाता है कि दसवीं कक्षा की ऑनलाइन परीक्षा के लिए व्हाट्स एप करें। परीक्षा की सम्पूर्ण जानकारी आपको मिल जाएगी। परीक्षा के लिए ऑनलाइन लिंक आपको मैसेज के माध्यम से मिलेगा।

Friday, 24 May 2019

mportant Formulas in Algebra

Important Formulas in Algebra
Here is a list of Algebraic formulas –
  • a2 – b2 = (a – b)(a + b)
  • (a+b)2 = a2 + 2ab + b2
  • a2 + b2 = (a – b)2 + 2ab
  • (a – b)2 = a2 – 2ab + b2
  • (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
  • (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
  • (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
  • (a – b)3 = a3 – 3a2b + 3ab2 – b3
  • a3 – b3 = (a – b)(a2 + ab + b2)
  • a3 + b3 = (a + b)(a2 – ab + b2)
  • (a + b)3 = a3 + 3a2b + 3ab2 + b3
  • (a – b)3 = a3 – 3a2b + 3ab2 – b3
  • (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
  • (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
  • a4 – b4 = (a – b)(a + b)(a2 + b2)
  • a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
  • If n is a natural number, an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)
  • If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
  • If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
  • (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….
  • Laws of Exponents (am)(an) = am+n (ab)m = amb(am)n = amn
  • Fractional Exponents a0 = 1 aman=amn am = 1am am = 1am
  • Roots of Quadratic Equation
    • For a quadratic equation ax2 + bx + c where a ≠ 0, the roots will be given by the equation as b±b2−4ac2a
    • Δ = b2 − 4ac is called the discrimination.
    • For real and distinct roots, Δ > 0
    • For real and coincident roots, Δ = 0
    • For non-real roots, Δ < 0
    • If α and β are the two roots of the equation ax2 + bx + c then, α + β = (-b / a) and α × β = (c / a).
    • If the roots of a quadratic equation are α and β, the equation will be (x − α)(x − β) = 0
  • Factorials
    • n! = (1).(2).(3)…..(n − 1).n
    • n! = n(n − 1)! = n(n − 1)(n − 2)! = ….
    • 0! = 1
    • (a+b)n=an+nan−1b+n(n−1)2!an−2b2+n(n−1)(n−2)3!an−3b3+….+bn,where,n>1


No comments:

Post a Comment

Thank you.